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Derivation of low-temperature series expansions for the Ising 
model with triplet interactions on the plane triangular lattice 

M F Sykes and M G Watts 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

Received 9 May 1975 

Abstract. The derivation of low-temperature (high-field) series expansions for the king 
model with pure triplet interactions on the plane triangular lattice is described. Euler’s law 
of the edges is used to transform the linkage rule into a form convenient for the derivation 
of ferromagnetic polynomials. Explicit results are given for the ferromagnetic polynomials 
corresponding to the first twelve powers of the temperature variable (U,) both as functions 
of the field variable ( p )  and, in zero field, as  functions of the temperature variable (U,) of the 
simple king model. 

1. Introduction 

king models with multi-spin interactions have been studied by many authors (Wegner 
1971, 1972, Merlini and Gruber 1972, Hintermann and Merlini 1972, Thibaudier and 
Villain 1972, Baxter 1974, Wood and Griffiths 1973, 1974, Merlini 1973, Merlini er a1 
1973, Griffiths and Wood 1973, Gruber er al 1973). In this paper we investigate the 
configurational problem that arises in the derivation of low-temperature and high-field 
expansions for the Ising model of a ferromagnet on the triangular lattice with three- 
spin interactions (pure triplet model). Recently the free energy of this model in the 
absence of a field has been solved exactly (Baxter and Wu 1973, 1974, Baxter 1974) and 
the spontaneous magnetization has been conjectured from a study of its series expan- 
sion (Baxter er a1 1975). We describe the configurational background to  this latter study 
and derive the data there used. Ferromagnetic polynomials also provide data for the 
investigation of the low-temperature susceptibility (Watts 1974)t and higher-field 
derivatives of the model. 

2. The configurational problem : the linkage rule 

The simple Ising model for a system of spins on the triangular lattice is defined by the 
Hamiltonian 

& = -mHCai-J2Caia j  (2.1) 
i i . j  

where m denotes the magnetic moment per spin, H the applied magnetic field, J 2  the 
pair interaction energy, and the ai take the conventional values k 1. The first summa- 
tion is taken over all N sites of the lattice; the second over all 3N bonds. 

t The coefficients of U’* for I and x quoted in Watts (1974) are in error by insignificant amounts 
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1470 M F Sykes and M G Wat ts  

The pure triplet model is defined by the Hamiltonian 

where J3 denotes the triplet interaction energy and the second summation is taken over 
all the 2N elementary triangles of the lattice. To develop high-field expansions for the 
pure triplet model we study perturbations of the ordered state. In zero field there are 
four ground states (Merlini and Gruber 1972, Gruber et a1 1973). For an infinite lattice 
the choice of any of the four arrangements : 

+ + 

- - + + 
for one triangle, together with the condition that the energy is minimal, determines the 
state of the whole lattice. In the presence of a field the state (a) is the appropriate choice 
and at absolute zero all the spins point one way, corresponding to a ground state energy 
of - N(2J3 + mH). Following closely the usual treatment of the simple Ising model we 
write the free energy per spin F in the form 

F = -2J3-mH-kTlnA(p,p3) (2.3) 

with 

p = exp( - 2mH/kT) 

u3  = exp(-4J3/kT). 
(2.4) 

The field variable p is identical with that used for the simple Ising model ; the tempera- 
ture variable u3 only differs in having J 3  in place of J 2 .  (For the simple model conven- 
tionally U = u2 = exp( -4J2/kT).) 

In any perturbed state the elementary triangles can be divided into four classes 
characterized by the number of perturbed spins at their vertices : 

ground state perturbed perturbed perturbed 
(un-excited) (excited) (un-excited) (excited) 
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(perturbed spins being denoted by full circles. Classes (1) and (2) can occur in three 
orientations each on the lattice.) Those of classes (0) and (2) make no contribution to the 
inter-spin energy above the ground state (the configurational free energy) ; those of classes 
(1) and (3), which we have shaded, contribute 25, each. We call these excited triangles. 
I t  is a complicating feature of the model that while the perturbation of spins in the ground 
state results in a corresponding perturbation of the states of the elementary triangles not 
all of the perturbed triangles are necessarily excited. If [A, s ]  denotes the coefficient of 
N (the conventional free energy count) in the total number of ways of distributing A 
excited triangles with a total of s perturbed spins then 

In A = 1 [A, s]ufApS 
A.s 

the summation being taken over all possible states. The ferromagnetic polynomials 
correspond to grouping the double series (2.5) in ascending powers of U, : 

In A = 1 Yi(p)u\  
L 

and this is the form suitable for the derivation of the specific heat, spontaneous mag- 
netization and initial susceptibility and the higher-field derivatives. We have denoted 
the U,-grouping polynomials by Y ; the u2-grouping polynomials for the simple Ising 
model are usually denoted by I). 

The whole process of series derivation is formally analogous, mutatis mutandis, to 
the corresponding theory of the simple model. A detailed treatment of the latter in the 
present notation is given by Sykes et al(1965,s 2 and 1973,s l), see also Domb (1974). 

It is readily seen from elementary geometrical considerations that while every per- 
turbation of the spins corresponds to an arrangement of (shaded) excited triangles not 
every arbitrary shading of triangles on the lattice can correspond to a perturbation of 
spins and therefore to a valid distribution of excited triangles. It can be shown that a 
necessary and sufficient condition for an arrangement to be valid is that the number of 
excited triangles incident upon each vertex be even. To perform the summation in (2.5) 
it is convenient to use as parameters the number of overturned spins (s) and the number 
of nearest-neighbour bonds ( r )  and elementary triangles ( t )  between them. Denoting 
the number of triangles in each of the four classes by no ,  n ,  , n, , n3 respectively, we have 
the elementary relations : 

no+n,  +n2+n3 = 2N 

nl+2n2+3n3 = 6s 

n2+3n3 = 2r 

n3 = t 

A = n ,  +n3 = 6s-4r+4t. 

The summation (2.5) can now be written 

In A = 1 [ s ,  r, t ] ~ : ~ - ~ ~ ~ ~ '  p = p i u ' ;  
s,r.f i 
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where [s, r ,  t ]  is the free energy count of all the perturbations that correspond to each 
choice of s, r and t .  Perturbed spins give rise to  a configurational energy given by the 
linkage rule : 

4(3s - 2r + 2t)J3 + 2msH (2.9) 

which may be contrasted with the corresponding linkage rule for the simple Ising model 
for which perturbed spins give rise to a configurational energy of (Sykes and Gaunt 1973) 

4(3s - r )J2  + 2msH. (2.10)  

In close analogy with the simple model we seek to apply the linkage rule (2.9) to the u3- 
grouping (2 .6)  ; this temperature grouping provides expansions in the temperature 
variable u3 for fixed values ofthe field variable p. The first few ferromagnetic polynomials 
are readily found by inspection to be : 

Yl = Y 2  = 0, Y3 = p, (2.11) 

The temperature grouping for the simple Ising model requires a listing of configurations 
by ascending values of 3 s - r ;  the pure triplet model requires a listing by ascending 
values of 3s-  2r + 2t. We characterize the configurations that contribute to this latter 
listing in the next section. 

3. Application of Euler’s law of the edges to the linkage rule 

We have expressed the linkage rule in terms of three parameters r, s, t of the graph repre- 
senting the perturbed spins and their nearest-neighbour bonds (the low-temperature 
configuration). We denote the number of connected components in this graph by c, 
and the number of finite faces byf; further we define a hole as a finite face which is not 
an elementary triangle and denote the number of these by h. By the well known result, 
due essentially to Euler : 

r - s s c  = t + h  ( 3 . 1 )  

and therefore 

3 s - 2 r f 2 t  = s + 2 ( c - h )  = s+2t i .  

We call the quantity c - h  the discriminant of the configuration and denote it by ti. I t  
follows from (3.2) that the linkage rule can be written 

4(s + 2ti )J3 + 2msH (3 .3)  

and the listing of configurations for a temperature grouping corresponds to a listing 
by ascending values of s + 2 ~ .  As the number of spins increases within a fixed power of 
u 3 ,  K must decrease; this corresponds to selecting graphs with fewer components and 
more holes. The listing in ascending values of s terminates with connected graphs with 
the maximum possible number of holes. For example, the listing for Y terminates at 



Low-temperature expansions for triplet model 1473 

s = 19 with the graph: 

with a count of 6 N ;  it has five holes and a discriminant of -4. For s = 17 the list is 
based upon two arrangements of four holes: 

c 

(20 x 3 N )  
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In the second arrangement the summation is over the 20 adjacent external sites (open 
circles) each of which in turn is to be occupied by a single perturbed spin. These cor- 
respond to several different topologies with r = 20 or 21 or 22 but this detail need not be 
retained since the discriminant is unaffected. This latter consideration introduces a 
simplification in the listing and by an exhaustive systematic study of the possible arrange- 
ments of holes we have completed the ferromagnetic polynomials through Y : 

y6 = -3ip2+44p4+p6 

Y 7  = -30p3+186p5+12p7 

Y = - 202$p4 + 813p6 + 99p8 + 3p1' 

Y 9  = - 19fp3 - 1 2 5 0 ~ '  + 3 631p7 + 696p' + 51p1' + 2p13 

Yl  
'4'11 = 2 889$ -42 300p7 +72 994p' $27 114p" + 4  8 8 1 ~ ' ~  +614pI5 +72pI7 +6pI9 

"12 = -129$~~+2430 lp~-237920p~+325066p~ '+  157 512fp12+37 7 9 8 ~ ' ~  

(3.4) 
= 288p4 - 7 373*p6 + 16 2 6 0 ~ '  + 4 473p" + 5 . 5 5 ~ '  + 45pI4 + 3p1' 

+6525pl6+l  052p18+153p20+14p22+p24, 

Higher terms present no new difficulty of principle but would be laborious to enumerate. 
The polynomial Y13 terminates with 6p2', "14 with 3 ~ ~ ~ .  The values of Y,, ( p  = 1) 
through n = 12 are in agreement with the exact solution of Baxter and Wu (1974). 

4. Order parameters for the triplet model 

From (3.4) the spontaneous magnetization I follows from the defining relation 

= 1-24:) L = In A. 
&I= 1 

(4.1 ) 

We obtain 

I = 1 - 2 ~ :  - 1 2 4  - 6 6 ~ :  - 350~2 - 1 848~:  - 9 780~: - 52 012~: - 278 118~:' 

- 1 495 092~:' -8 077 2 7 4 ~ : ~  - . . . . (4.2) 
Examination of the coefficients in (4.2) has lead to a conjectured exact algebraic expres- 
sion for I as a function of u3 (Baxter et a1 1975). The critical exponent is found to be 

in agreement with extrapolations (Watts 1974) and the new universality hypothesis 
of Suzuki (1974). On the basis of the conjectured form the expansion (4.2) can be 
extended indefinitely; we quote the next four terms : 

(4.3) -43 836468ui3-238889424ui4-l 306708 196wi5-7 171 779996ui6-. . . .  

The polynomials (3.4) also determine the expansions of all the higher-field deriva- 
tives ; we quote the reduced initial susceptibility : 

xo = ~ ~ + 1 2 ~ ' : + 9 9 u : + 7 2 6 ~ $ + 4 9 6 8 u : + 3 2 6 6 4 ~ ~ + 2 0 9  238u;+ 1 3 1 6 6 1 0 ~ : ~  

+ 8 178 846~:' + 50 322 4 8 8 ~ : ~  + . . . . (4.4) 
From an analysis of the coefficients of (4.4) using Pade approximants Watts (1974) 
concluded that the critical index y' = 1.15 & 0.15 and that very probably 7' = 2. 
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Baxter et al( l975)  have conjectured the exact form of another order parameter for 
the pure triplet model: a bond polarization P, which is conveniently defined from the 
generalized Hamiltonian of the mixed model. Writing 

we can define 

It is of course not essential to introduce the mixed model to define P,; in the present 
context the energy J z  is used only as a dummy variable effectively labelling the polarity 
of pairs of adjacent spins. To  evaluate the expansion coefficients in zero field we require 
the ferromagnetic polynomials Y,(p) with a modified argument : Y,(u2) corresponding to 
the zero-field (p = 1) expansion: 

In A = Y i ( u z ) u \ .  (4.7) 
i 

This requires a detailed analysis of the configurational listing using both linkage rules 
(2.9) and (2.10). We give the values of Y,(uz) through n = 12 in the appendix. From these 
and (4.6) we obtain : 

P2 = 1-4ui-20~;-  1 0 0 ~ : - 4 9 2 ~ ~ - 2 4 6 4 ~ : - 1 2  532~!-64640~? 

- 337 340~:' - 1 777 8 8 8 ~ : '  - 9 448 1 12ui2 - . . . . (4.8) 

An exact expression for Pz as an algebraic function of u3 has been conjectured by Baxter 
et al (1975) from an examination of the coefficients of (4.8). The critical exponent is 
found to be A.  On the basis of the conjectured form the next four coefficients are : 

- 50 566 0 8 0 ~ : ~  - 272 283 0 8 8 ~ : ~  - 1 473 951 3 3 6 4  - 8 016 095 4 4 4 ~ : ~  - . . . . (4.9) 

5. An order parameter for the simple Ising model 

By interchanging the roles of the variables u2 and u3  in the preceding section we may 
define an order parameter for the simple Ising model, 

which may be regarded as a form of spontaneous triangular polarization. To evaluate 
the expansion coefficients we require the ferromagnetic polynomials $,(p) for the simple 
model with a modified argument: $,,(U,) defined by interchanging U, and U, in (4.7). 
This requires a detailed examination of the configurations that contribute to the U,- 
grouping; this grouping which as has already been emphasized is not the same as the 
U,-grouping, has been given by Sykes et a[ (1973) through and extended by Sykes et 
a1 (1975a, b) through U:'. From an analysis of the contributing configurations we have 
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obtained the polynomials @"(u3) through n = 21 and we list them in the appendix. 
Using (5.10) we have derived the expansion : 

P3 = 1 - 6 ~ ~ - 2 4 ~ ~ + 2 2 ~ ~ - 1 2 6 ~ ~ + 1 9 2 ~ ~ - 8 4 8 ~ ~ + 1 4 4 0 ~ ~ ~ - 6 2 5 8 ~ ~ '  

+ 10 882~:' -47 9 2 8 ~ : ~  + 84 3 1 8 ~ : ~  - 375 3 2 6 ~ : ~  + 667 2 4 8 ~ : ~  

- 2 988 252~:' + 5 366 0 0 0 ~ : ~  -24 106 6 3 8 ~ : ~  +43 695 984~;' 

- 196 565 300~ ; '  + . . . . ( 5 4  

Numerical studies of the coefficients indicate a critical exponent of $. This conclusion 
has recently been confirmed by Baxter (1975) who has calculated the exact expression 
for P 3 .  

6. Summary and conclusions 

We have shown that the linkage rule for the pure triplet model can be transformed by 
using Euler's law of the edges; the power of the temperature variable u3 corresponding 
to any configuration is then found to depend only on the number of spins and a dis- 
criminant of the configuration. This discriminant, defined as (c - h )  for any configura- 
tion with c components and h holes, also arises in the derivation of series expansions for 
the simple Ising model on the triangular lattice by the code method (Sykes et al 1975a, b); 
we have therefore been able to exploit data derived originally for the simple model and 
so obtain series of useful length for the triplet model. 

A study of the expansions derived for certain order parameters ((4.1) and (4.5)) has 
made it possible to conjecture their exact form (Baxter et a1 1975). It is interesting to 
notice that the critical indices for (4.1) and (4.5) for the pure triplet model are both & 
while the index for (5.1) is 6 and therefore identical with the critical index for the mag- 
netization of the simple Ising model. 
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Appendix 

Polynomials Y and @ for mixed model ( H  = 0) 

In A = yn(u2)u; = 2 rC/n(u3)~; 
n n 

Y3 = U :  

Y4 = 3u: 

Y ,  = - 3 4 4  + 3 4  + 1 2 4  + 29u; +U:' 

'-P5 = 2u;+9u; 
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Y7 = - 2 4 ~ ~ + 2 1 ~ ~ + 6 0 u ~ ' + 9 9 ~ ~ ' + 6 ~ ~ ~ + 6 ~ ~ ~  

Y8 

Y'9 

= - 1 0 ~ ;  - 1364~:' + 129~:' + 2 8 0 ~ : ~  + 3 4 8 ~ : ~  + 2 7 ~ ; ~  + 36~:' + 3 6 ~ : ~  + 3ui9 

= 20$:- 12~;'- 1 7 1 ~ i ' - 6 5 6 ~ ~ ~ + 7 2 6 ~ ~ ~ + 1  248ui4+ 1 327ui5+ 1 8 6 ~ : ~  

+228ui7+ 190ui8+9ui9+ 1 8 u ~ ' + 2 4 ~ : ' + 2 u : ~  

" ' 0  = 6uio+261u:' - 3 1 3 ~ 1 ~ -  1428ui3-286@ui4+3 807ui5+5 577ui6+5 118~:' 

+ 1  263ui8+1 281ui9+1 0 1 7 u ~ 0 + 1 4 7 u ~ ' + 1 5 6 u ~ 2 + 1 7 1 u ~ 3 + 6 u ~ 4 + 1 2 u ~ 5  

+ 27ui6 + 3 ~ : ~  

' I ' l l  = 2 7 ~ : ' + 1 6 0 ~ i ~ +  1 9 5 0 ~ : ~ - 3 3 0 6 ~ i ~ - 9 4 2 3 ~ : ~ - 1 1  556ui6+19O23uk7 

+24408i8+20 730ui9+7 554ui0+7 221ui1+5 292ui2+ 1 2 2 6 ~ : ~  

+ l  2 O 2 ~ : ~ + 1  1 0 4 ~ : ~ + 1 3 8 u : ~ +  1 8 0 ~ ~ ' + 2 2 2 ~ ~ + 1 2 ~ ~ ~ + 1 8 u ~ ~  

+42u:' +6ui4 

"12 = 3u~'-63$i2+312ui3+2 332$.4i4+ 11 688uiS-26 742ui6-54 501~4 '  

- 44 43 1 4 ~ : ~  + 91 O08ui9 + 107 1 12~:' + 86 8 4 9 ~ :  ' + 43 674~:' + 39 0 9 0 ~ 5 ~  

+ 27 2 9 6 4 ~ : ~  + 9 5 6 4 ~ : ~  + 8 3 5 5 ~ : ~  + 6 824~:' + 1 6 4 1 ~ : ~  + 1 6 0 5 ~ : ~  + 1 6 7 7 ~ :  

+ 231~; '  + 2 8 8 ~ : ~  + 392:3 + 3 0 ~ : ~  + 36ui5 + 87ui6 + 14ui9 +U:' 

= U ;  

*4 = o  
* 5  = 3u': 

$7  = 9u:+3u; 

$6 = 2 ~ :  -3;~: 

$8 = 1 2 ~ 2 - 2 4 ~ :  

$9 = 29~2+21u:- lOu38+20$: 

$10 = 60~:-136-$~:-12~:+6~:' 

$ 1 1  = 9 9 ~ : +  129~:- 1 7 1 ~ ~ + 2 6 1 ~ : ~ + 2 7 ~ : ' + 3 ~ : ~  

$ 1 2  = ~ ~ + 2 8 0 ~ ~ - 6 5 6 ~ ~ - 3 1 3 u : ' +  1 6 0 ~ : ' - 6 2 ~ u : ~ + 2 4 u : ~ + 2 u : ~  

$ 1 3  = 6~ :+348~ ,8+726~ : -1  428~:'+1 9 5 0 ~ : ' + 3 1 2 ~ : ~ +  123ui3+ 1 1 7 ~ : ~ + 2 7 ~ 3 ~  

+ 3 4 6  

$14 = 6 ~ : + 2 7 ~ , 8 + 1 2 4 8 ~ : - 2  86@~:'-3 3 0 6 ~ : ' + 2  3 3 2 ) ~ : ~ - 2 0 3 4 ~ ! ~ + 8 1 ~ : ~  

+342ui5+ 168ui6+42u:7+6u:8 

$ 1 5  = 3 6 ~ : s  1 3 2 7 ~ : + 3  8 0 7 ~ : ~ - 9 4 2 3 ~ : ' + 1 1  688ui2+4 522ui3-425ui4 

+ 1 2 0 9 ~ ~ : ~ + 6 9 6 ~ : ~ + 6 7 5 ~ : ~ + 2 9 0 ~ : ~ + 8 7 ~ : ~ +  14u:'$u:' 
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$16 = 36u!+ 186u2+5 577u:'+11 556~: ' -26742~: '+24714~:~-24306~:~  

-2 196~:' + 1 2 0 6 ~ : ~  + 85814:' + 1 839~:"+ 1 278~:' +606~:' + 198~:' 

+42~: '+6u:~ 

i j 1 7  = 228~:  + 5 1 18~:' + 19 0 2 3 4  ' - 54 501~:' + 57 5 6 7 ~ : ~  + 59 1 0 6 ~ : ~  - 25 8 2 1 4  

+ 19 8 6 0 ~ : ~  + 5 51 l u i 7  + 1 677~:' + 3 669~:' + 4  068~:' + 2 7 4 5 4 '  

+ 1 4 0 1 ~ : ' + 5 0 7 u ~ ~ +  1 4 7 ~ : ~ + 2 7 ~ : ~ + 3 u : ~  

$ 1 8  = 1 9 0 ~ ~ + l 2 6 3 ~ ~ ' + 2 4 4 0 8 ~ ~ ' - 4 4 4 3 1 ~ ~ ~ ' - 1 8 5  554ui3+2O3 1 0 8 4 ~ : ~  

- 188 8773~:' - 59 6 1 2 ~ : ~  + 1 5 1 4 ~ : ~  - 1 233&i8 + 6 3 4 6 ~ : ~  + 5 646~:' 

+ 9  812u:'+8 961u: '+6432~:~+3 3 8 7 ~ : ~ +  1 4 5 8 ~ : ~  + 4 9 6 ~ : ~ +  1 2 8 ~ : ~  

+ xUy+ 2 4 9  

$19 = 3 ~ ! + 9 ~ ; +  1 2 8 1 ~ ~ ' + 2 0 7 3 0 ~ ~ ' + 9 1 0 0 8 ~ ~ ' - 2 9 3 9 7 6 ~ ~ ~ + 2 2 5  3 5 1 ~ : ~  

+ 606 705~:' - 374 0 3 4 ~ : ~  + 274 2 3 0 ~ : ~  + 37 9 5 9 ~ : ~  -4  4 4 6 ~ : ~  

+23 814u:'+ 11 673u:'f 19 779u:'+23 1O9uZ3+21 5 2 5 ~ : ~ +  15 4774'  

+ 8  8 9 8 ~ : ~ + 4 3 3 8 u : ~ +  1 719~:~+579u:'+ 147u:'+27u,3' +3u,3' 

$'o = 1 8 ~ 2 +  1 017~:' + 7 554~:' + 107 112~:'- 163 7 2 2 ~ : ~  - 1 169 7 4 2 ~ : ~  

+ 1 397 904~:' - 1 086 656;~:~  -948 0 0 6 ~ : ~  + 195 3 2 7 ~ : ~  - 170 6 0 4 ~ : ~  

- 59 115~:' + 35 676~:' + 34 671 :2 + 36 2 3 4 ~ : ~  + 50 9 9 7 ~ : ~  + 55 7 8 8 ~ : ~  

+52479~:~+38472~: '+24465u:~+ 12996u:9+6060u~0+2412u~'  

+ 798ui2+ 2 1 6 ~ : ~  +42ui4+ 6ui5 

$ 2 1  = 2 4 ~ ~ + 1 4 7 ~ : ' + 7 2 2 1 ~ : ' + 8 6 8 4 9 ~ : * + 4 2 4  1 5 5 ~ : ~ -  1515 743~:~+569241u:' 

+ 5 178 4 8 5 ~ : ~  - 3 769 9 9 8 ~ : ~  + 2 654 6 1 0 ~ : ~  +654 6 5 2 ~ : ~  - 32 840~:' 

+5197@u:' -3059ui2+ 105 368uz3+75 365ui4+ 109 8 4 3 ~ ; ~  

+ 124030~:~+141 148ui7+ 1 2 7 9 4 7 ~ : ~ +  1 0 0 6 1 2 ~ : ~ + 6 7  786~:' 

+ 39 9 1 2 4 '  +20 987u:'+9 6 3 2 ~ : ~  + 3  918ui4+ 1 341~:'+392u:~ 

+ 8 7 ~ : ~  + 14ui8 + u:9 
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